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The Two-Criterial Dynamie Lot Size Problem

K. Rrcnrnn

Technical University, Karl-Marx-Stadü, G.D.R.

The dlnamic lot size model with time-constant costs is studied. The criterion of minimizing the
sum of set-up and holding costs is eomplemented by another objective eonsisting in the minimization
of the stock. It is shown that solutions which are efficient with respect to these two objectives can
be derived from parametric one-criterial models with combined objecti're functions. A complete
set of efficient solutions which are distinct in their objectives is covered by this approach.

1. The problem

l\Iost of the textbooks in Operations Research touch in one or another ryav lot size
models or their dynamic extensions [2], [3], [?], [9]-[11]. Generalizations of the models
in multi-stage processes and.multi-item systems have been also investigated [1], [4]-[7],
[12]. ]Iodels of this type are widely used in practice to determine the size of production
by minimizingthe sum of size-independent fixed costs and size-depending holding costs.
It follows usually from the application of such models that the size of production lots
will raise, and, that the period of production will be moved away from the period in
which the demand actually must be satisfied. The greater the distance betrveen the
periods of producing and selling the items, the more probable are ehanges in the de-
mand structure and the more complicated will it be to respond flexibely to disturbances.

It was this situation sketched here that suggested to study multi-criterial lot size
models. The economical criterion of minimizing bbe costs can be complemented by
another one, which might be treated as minimizing the difference between the periods
of producing and selling the items. More concretely, it finds its expression in the minimi-
zation of the stock. Then a two-criterial lot size model can be formulated and solutions
u'hich are efficient with respect to the costs and to the stock are to be found. The deci-
sion maker will then choose that solution n'hich suits best his individual conception on
the relationsship betrveen costs and time.

fn the paper the model will be described and it rvill be shou'n that the efficient solu-
tions can be found by applying the stability results for the one-criterial problem [8]
to the model with combined objective functions.

The one-criterial lot size model can be introduced as follorrs: The process of production
and stock-holding is considered for one item and ? periods. The production figures
r t2 0 for  t th  per iod,  t :1 ,2, . . . ,7 ,  have to  be chosen such that  the g iven deter-
ministic demand d, ) 0 is satisfied for all f and that the total sum of set-up costs and
holding costs is minimal. The fixed set-up costs arisingif. x, ) 0 are denoted by c ) 0
and the per-unit per-period linear holding costs are denoted b"v ä ) 0. If the stock aü
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the errd of ttä period is denotedby y, the denand is satisfied in the case that Ut : !/t-r -
r, - dt is nonnegative. Usually the assurnption is made that the stock equals zero at
the begin and at the end of the considered planning period l, 2, ..., T, i.e. Ao : Ar : A.
Then the model can be described by the formulae (1)-(a):

! / t :  u r - t  |  ; t 1  -  d1 '

u t ) o ,  r r ) o ,  ' : r ' 2 " " ' T '

A o :  U r  :  0 ,
T T

/r : c ! sign 4 * h I y,-+min.
t : 1  t : L

( 1 )

( 2 )

(.r )
( { )

The second criterion consisting in the minimization of the stock is provided b;- for-
mula (ö) :

T
Fz:  2  y , -+  rn in .  ( t )

t : 1

Note that /, makes sense only if the first criterion is also of interest. fn the other
case the solution {*, : d,}L, provides fz : 0.

The one-criterial model li'iil play a significant role in the subsequenü investigations.
ft rvill be therefore denoted by M(c, ä). Feasible solutions of this model have to satisf-v
the conditions (1)*(3), rvhile optimal solutions are feasible solutions minimizing the
function (4).

Let two feasible solutions be considered which have the values Fi, I; and Fi', F/
respeetively. Then the first solution is said to be dominated by the seeond one if
Fi>Fi' and F'r>F;'.k is strongly dominated if t'he inequalities hold and one of
them is strong. An efficient solution can be defined as a feasible solution which is not
strongly dominated by any other feasible solution. fn other words, the feasible solution
associated with the values F;, F; is efficienü, if it follows for any other feasible solution
thab F'r' < Fi irnplies Fi < E{ and Fi' < -Fj implies F', < f',,'.

The main task in multi-criterial optimization is to find set EFF of all efficient solu-
tions of a given problem. fn many cases it is preverable to characterize subset EFF'
of efficient solutions which covers all possible pairs of values (Fr,Fr) over EFF, i.e.
EFF' contains at least one efficient solution for each pair of values. The airn of the
paper is to describe such subset for model (1)-(5).

Example:  Let '  T  -  $ ,  6  :  5 ,  h  :  2 ,  dr :  3 ,  dz:  2 ,  ds:  1 .  The opt imal  so iut ion
(n ,  y )  :  { * r :  3 ,  f r z :  3 ,  r " :  0 ,  A t :  0 ,  Az :  I ,  As :  0 }  u ' i t h  F t :  12  and  I z  :  1  i s
an efficient solution as iü rvill be shown later on.

2. Stability and monotony of the one-critical problem M (c, h)

fn this section some results from our paper [8] n'ill be listed in a slightly modified version
and nerv monotony properties rvill be derived.

It can be easily shorvn that all optinal solutions of" M(c, ä) fulfil

(i) d, : 0 irnplies nt: 0,
(ä) At I 0 impli€s lr1 : 0 and

(iü) y, :  0 implie s *,€ {d,,,  d,t + d,t+,,. . . ,  i  4} for au l.
( E t l

The optimal solutions can be found using the following recursive procedure: Let

T o : { t : i f i } 0 } ,  h ( k , l ) : h  I  ( t - k * L ) d ,  a n d  c ( l c , I ) : " + h ( k , l )  f o r  / . ' <  1
f : A * 1
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and d,. ,, ) 0. Then

, / o : : 0 ,  ; 1 , : :  m i n  { c ( k , t )  * f r , t k < t  -  I , k €  ? o  -  1 }  ( 6 )

for all t> 7 and ü€(To - 1) V {T}, can be used to determine the urinimal value
Ft : f7 f.or JI(c, h).

Let f(.k.t) : c(k,t) * f* and let the parameters fr(ü) be introduced by

ft : f(k(t), t) (?)

for all suitable f. Then an optimal solution can be found using these parameters.
A l g o r i t h m :  I n p u t k ( t ) f o r t € ( T o  -  1 )  V { 7 } .

1 .  t ; : T .
t

2. rr i{o+r r: I  dr, o.r::  0
r : k ( t ) * l

f o r  r :  l c ( t )  +  2 , . . . , t .

3. Tf k(t) - 0 stop, else ü:: k(t),  go to step 2.

Output  ty  f r22 . . .  , . f r7 .
The components of the vector y can be determined by (1).
Since the parameters ft(f) play the most important role in solving the one-criterial

problems the collection 1{ : {k(t)},.<r"-1)v{"i is called generalized solution. K can be
used to solve not onl.v M(c,h) but a class of probiems for all time horizons ?'< T.
The parameters ft(ü) are usually not unique. ft can be, however, sholn, that for all
generalized solutions the inequality

max {ä(/)} ( min {k(t)) (8)

f o r a l l Z < ü h o l d s .
Example: The optimal solution provided in the first section is generated from

K : (0, 0. 1). The collection K' : (0, 1, 1) leads to the same optimal solution, it is,
horvever, not a generalized solution, for the optimal solution for T' : 2 cannot be
der ivedfromthiscol lect ion.  I f  thecost inputsarereplacedby (c ,h)- -  (4 ,2) ,  thenboth
K : (0 ,0 ,  1 . )  and  K ' -  (0 ,  1 ,  1 )a regenera l i zedso lu t i onsandmaxk (2 )  -max (0 ,  1 )  :
f t(3) : 1.

ft follorrs from the approach used to solve problem .il[(c,h) that it is preverable to
study the stability of the model in terms of generalized solutions and not in terms of
optimal solutions.

LeL K be a generalized solution and let the follorving parameters be introduced:

(i) 7(0) ::  O, e$):: ö(k(t)) * l" for al l  suitable ü.
(ii) r(k, t) - (f (k, t) - f,)/@(k(t)) - a(k)) for all suitable k, t.

( i i i )  I  :  lrra,x max {r( lc, t):e(kg)) <Z(k)} and
t k

?, : min min {r(k, t) :Z(k(t)) > Z(k)} ,
t k

n'lrere / and u can be set minus or plus infinite respectivel;r, if they are not defined.

Theorem 1(t8]): K is a general ized, soluti ,on for al l  M(c',h') wi,th c',h'> 0 and.
(c * 7)/h 1 c'fh' I (c * u)/h and, i,t i,s not a generalized, soluti,on for any other pai,r
(c '  ,  h ' ) ,

Theorem 2 ([8]): Let d1,d2,... ,dr be a f i ,red,.sequence of i lemand, aalues. Then, there
is a finite number of generalized, soluti,ons and, associateil, stabili,ty regions ilefi,ned; by the
inequali.ttes i,n Theorem 7 uhich c,oo^er R2*.

Esarnple: For the example from Section 1 the values I - -L and i l :  l  can be
forrnd, i.e. the stability region oL K : (0, 0, 1) is provided by 2 I c'fh'( 3. For the
dernand vector (3, 2, L) the positive orthant R:- is covered by the stabilit.": regions
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c ' { h ' , h ' 3 c ' 1 2 h ' , 2 h ' < c ' 1 3 h ' , 3 h ' < c ' w i t h t h e a s s o c i a t e d g e n e r a l i z e d s o l u t i o n s
(0, 1,2), (0, 1, 1), (0, 0, 1) and (0, 0, 0) (compare Fig. 1).

Now some monotonv results rrill be derived.
Lemma L: Let K be a general ized, soluti ,on for II(c,h.) ani l  let u:0: r(k",t"). Then.

the collecti,un f{" : lk(t)' 
t + t"

l k " ,  t  -  t "
i,s also a generali.zeil solution for M(c, h).

Proof: I t  fol lows from 0 : r(k",t") Lhat f(k",t"):1t,, .  Then al l  valuesJ remain
unchanged and the nerr solution has the same value as 1{.

Remark: A similar result holds for Z : 0.

Lemma 2:  Let  t '  :  max { te  To-  L:  t  1 t " ,  d ,+r  > 0} .  Then the i ,nequal i t tes
k" > k(t') anil k(t") I t' are fulftlled,.

Proof : ft follon's from inequality (8), Lemma 1 and relation k(t") < t" that the state-
ment is valid.

Lemma 3 :  Z ( t ' )  >  ( t " )ö  -  L .

Proof : Let Z(t') < ö(t") - 2. rt has been sho'i'n in [8] t]nat k ( I implies z(k) <eQ).
If. lc(t") ( ü' then the inequalities Z(f') <-c(k(t")) - l and Z(k(t")) < c(t') hold. Contra-
diction. Ilence k(t") > t' holds contradicting Lemma 2.

Theorem 3: Let K be a genera,Iized, soluti,on lor M(c,h) ond,Iet K" be the generali.zeil,
solution generated''ün Lemm,a l for M(c * u, h). Let (r, y) onil (r", a") be the corresponiling
opti,mal solutöons. Then the i,nequ,ali,ty E sign al6 ( Xsign ü;' + 1, hold,s.

Proof : The generalized solutions K and K" differ only in t".It follows from Lemmata
2/3 that z(lc") > ö(k(t')) > eUcQ")) - 1, i.e. the number of periods of production will
drop by at most one unit. Then the same will be true for t : T.

Theorem 4: Let d1,d2,...,dr be a fired, sequence of d,em,and, aaluas. Then tltere are
lTol generalized, solut'i,ons K1, K2,..., Ktr^t u'i.th the corresTtond,i,ng opti,mal, soluttons
(r1, A\, (r2, Uz), ... , (xlrol , ,lr"\ in the couör"öf Frz. such that

X s ign  f ,  :  lTo l  -  s  +  1 ,  . s  :  1 ,  2 ,  . . . , l ?o l .
Proof : The collection {fr - I}r.r^ is a generdttzed solution for sufficiently small c'.

Then determining the parameters zr-and generating new soiutions as in Lemma 1 the
number of production periods will gradually drop by one unit or will remain unchanged.
Since, on the other hand, {0}r..r" is a generalized solution for sufficiently large c', there
are lTol generalized solutions with the property indicated in the statement.

R,emark: The solutions mentioned in the theorem are optimal with respect to an
appropriate sequence of cost inputs ct/hL <

Theorem 5: Let two pmi.rs of cost i ,nputs 0qc'fh'<c"/h" be gi,aen q,nd, Iet (z' ,y')
anil (r", y") be optimal solutöons associ,ateil, u;i,th the cost inputs. Then the follou:ing in-
equali,ti,es hnld.
(i) ZLrsi < ZL'si' and
(ii) 2L._ sign ri 2 2L, sign n',' .

Proof : .(i) Let ZL, y; > ZLt Ai'. ß (ü) holds then c' X sign n; + h' Z gi >
C Z sign ni' + h' E g'r' is fulfi[ed. Contradiction. fn the other cJse let il, : E sign ,rj -
Jsign ri '  <0 and g : E yi - Z y;' > 0. Then

c '2s ignr ;  +h 'Ea i -  c ' .Xs ign  r i  *h 'Ea ' t '  :  c 'd ,  -1 -  h 'g10 and
c"Xsign &' t+ h" E Ai  -  c"  Esignr- i '  -  h"  Ey'r '  -  c"d +Ia, 'g2 0.
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Tt follorvs from these inequalities tdat c'd,1 -h'g < -dh"g/c" : -h"gc'/c" 1
c"dc'fc" : c'd,. Conüradiction. (ii) Let Xsignr', ( Jsignri'. Then it follorvs from the
first statement of the theorem that (r", y") is not optimal. Contradiction.

3. Complete eharacterization of EFF'

ft rvill be shorvn in this section that the efficient solutions from EFF' can be found
using the results provided irr the previous chapter. One can easily prove that efficient
solutions satisfy the relations (i)-(üi) for optimal solutions from Section 2. Therefore
the set of feasible solutions of the t'ivo-criterial problem can be assumed finite and the
following result rvill be of some help.

Theorem 6:LetFrand,Frbetu;oobject i ,uefunct ionsgi tenon af in i te  seüf( .  Thenal l
opti,mal solutians of the parametric problent

aVr(r) + (1 - a) Ir(n) -> min (9)

sub jec t to reX fo ro ,€ (0 , I )an i l , a t l eas toneop t in ta l so lu t i , onJo ra , :0anc la :L re .spec -
ti,uely are efJici,ent uith resTtect to Fr--> min, lo -+ min antl :r € X.

The parametric problem (9) for (1)-(5) is given by

fuI(ac, ah { (7 - a)).

Regarding all possible generalized solutions ,I{ for some pair (ac, ah
corresponding optimal solutions can be generated b-v the algorithm
section.

Theorem T: All generalized, (antl, therefore al.so o,ptirnall .solzrt[on.s of the problent (I0)
for a q 1 are effi,cient solutions for the mod,el (1)-(ö).

Proof: If a is positive then the statement is a corollary of the previous theorem.
Let a: 0. Then the objective function reduces to .F, and there is only one optimal
solution rvhich is efficient.

Example: Let the example from the first section be considered. Then the generalized
s o l t r t i o n s a s s o c i a t e d l v i t h t h e c o s t i n p u t s ( ö a . ,  I = a ) f o r 0 { a < L a r e e f f i c i e n t s o l u -

(10 )

+ (1 - a)) the
from the first

1l=g <)hl
' \ 0 ,1  

,1 )

4=-2a1^,1-s\
t O C ) u "  - - l

Fig. 1
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t ions. It  can be seen from l- ig. 1 that actually (0, 1, 2), (0, 1, 1) and (0, 0, 1) are the
corresponding efficient solutions. Let a' be such real number that

( i )  0 < a ' < l  a n d t h a t

(ii) the corresponding ger.reralized solution can be used to solve the problem (10) for
Ct, :  7.

It is clear that a' exists for. if / < 0, then a generalized solution for (c, ä) is also solution
f o r a < 1 a n d

(c * l ) / l t  l  aci(ah -  (1 -  a))

(compare Fig. 1). If / : 0 then (c, fr) lies on the boundary of the stability region and
the generalized solution associated rrith the left neighbour region is also optimal for
(c, fr) and it can be generated from sorrle a < 1.

Theorern 8: The general ized solut ' tons for '11(c' ,h ') ,  c ' fh ' )  c/h, are t lominated, by t l te
generalized .solution for )I(a'c, a'h = (1 - a')).

Proof: The values F. cannot be less than that of the generalized solution for
(a'c, a,'h - (1 - a')) since the latter is an optiural solntion rvith respect to (c, h). It
follows frorn Theorem 5(i) that the same is true for -Fr.

Example: It can be seen from Fig. 1 that (0,0, 0) is the generalized solution for
3h' < c' and c'fh' ) 3 > 5/2 : c/h. Then

f t : 1 2 a I ' r :  c  - - r { ä  :  1 3  a n d  F z : L < F i -  4 . .

It follows from the prerious tu'o theorems that efficient solutions can be derived frorn
the generalized and optimal solutions for M(.,.).

The question is now 'w-hether -solutions rvhich are not optimal for any pair (c', h')
rnay be efficient.

Theoren 9: Let K be a collection of i,ntegers u,hi,ch i,s not a generali,zed, solutinn Jor
a,ny ytair of co.st i,nputs. Then i.t is rlontinated by one of tlte generalözed, soluti,ons.

Proof: According to Theorems 1./5 there are exactly lTrl generalized solutions
Ky K2, ..., Ktr.i and corresponding optimal solutions associated rvith cost inputs
(c1, h1),  cz, h,) ,  . . . ,  (e,7, ' , l ,  r , )  such that cu/hu !  cs+t/hs+t,

Is ign  r ' r :  
' ,To  -  . *  *  1 ,

Z r t <  Z y f + t ,  . s  :  1 ,  2 , . . . , ? o ( - 1 ) .
Let s' indicate the index of the init ial cost inputs, i .e. (c,h): (cr,,hu,), and let (.r,  y)
be the feasible solution generated from collection J(. Then there is some s" sttch that
J sign rt : I sign rf".

( i )  Let  s"  2s ' .  Then tVi "  >Iy? 'and ( r ,y)  isdominated by ( r { , f , ' ) .

(ii) Let s" < s'. Then f V{' I Z A, since otherrvise Kr,, i. not a generalized solution
and K is dominated by K",,.

It follog-s from the statements that the elements of. EFF' can be derived from the
generalized solutions for problem (10).
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